On certain new refinements of Finsler-Hadwiger inequalities

نویسنده

  • Omran Kouba
چکیده

Several refinements of the Finsler-Hadwiger inequality and its reverse in the triangle are discussed. A new one parameter family of Finsler-Hadwiger inequalities and their reverses are proved. This allows us to obtain new bounds for the sum of the squares of the side lengths of a triangle in terms of other elements in the triangle. Finally, these new bounds are compared to known ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Euclidean Versions of Some Classical Triangle Inequalities

In this paper we recall with short proofs of some classical triangle inequalities, and prove corresponding non-Euclidean, i.e., spherical and hyperbolic versions of these inequalities. Among them are the well known Euler’s inequality, Rouché’s inequality (also called “the fundamental triangle inequality”), Finsler–Hadwiger’s inequality, isoperimetric inequality and others.

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

On Certain Inequalities for Hyperbolic and Trigonometric Functions

Starting from certain inequalities for hyperbolic and trigonometric functions, we obtain some general inequalities for functions and their inverses. As applications, refinements and new inequalities for hyperbolic and trigonometric functions are pointed out.

متن کامل

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017